Những câu hỏi liên quan
Ngọc Hạnh Nguyễn
Xem chi tiết
Cris devil gamer
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Bình luận (0)
Witch Rose
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Bình luận (0)
Thắng Nguyễn
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)

Bình luận (0)
Khánh Vũ Trọng
Xem chi tiết
tth_new
7 tháng 8 2019 lúc 9:08

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

Bình luận (0)
Châu Trần
Xem chi tiết
Hoàng Minh Hoàng
9 tháng 8 2017 lúc 22:01

Sai đề rồi

Bình luận (0)
Thắng Nguyễn
10 tháng 8 2017 lúc 12:10

ko sai nhé

Áp dụng BĐT Cauchy-Schwarz dạng ENgel ta có:

\(VT=\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{\sqrt{6}^2}{2\left(ab+bc+ca\right)}+\frac{\sqrt{2}^2}{a^2+b^2+c^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\approx15>14\)

Bình luận (0)
Truc Ninh Tran
Xem chi tiết
Trần Huy Hoàng
Xem chi tiết
Trần Huy Hoàng
20 tháng 1 2016 lúc 21:51

CÁC BẠN LÀM GIÚP MÌNH NHÉ MÌNH TICK CHO THANKS

Bình luận (0)
Lê Minh Đức
Xem chi tiết
Triệu Tuyên Nhâm
16 tháng 5 2017 lúc 21:41

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

Bình luận (0)
Minh Nguyễn Cao
Xem chi tiết
Nguyễn Tất Đạt
7 tháng 8 2019 lúc 12:37

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

Bình luận (0)

kết bạn với mình không

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Ngọc Đăng
26 tháng 4 2020 lúc 8:27

shrshdrhdhfhrffhrrfhdrwhr 9-9-9=-9

Bình luận (0)
 Khách vãng lai đã xóa